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In this paper we design and analyze a class of high order numerical methods to delta func-
tion integrals appearing in level set methods in two dimensional case. The methods com-
prise approximating the mesh cell restrictions of the delta function integral. In each mesh
cell the two dimensional delta function integral can be rewritten as a one dimensional
ordinary integral with the smooth integrand being a one dimensional delta function inte-
gral, and thus is approximated by applying standard one dimensional high order numerical
quadratures and high order numerical methods to one dimensional delta function integrals
proposed in [X. Wen, High order numerical methods to a type of delta function integrals, J.
Comput. Phys. 226 (2007) 1952–1967]. We establish error estimates for the method which
show that the method can achieve any desired accuracy by assigning the corresponding
accuracy to the sub-algorithms and has better accuracy under an assumption on the zero
level set of the level set function which holds generally. Numerical examples are presented
showing that the second to fourth order methods implemented in this paper achieve or
exceed the expected accuracy and demonstrating the advantage of using our high order
numerical methods.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

We study in this paper a class of high order numerical methods to the following type of delta function integrals
Z
Rn

f ðxÞkruðxÞkdðuðxÞÞdx; ð1:1Þ
where f ðxÞ is a weight function, uðxÞ is a level set function whose zero points define a manifold C of codimension one. In this
paper we consider the two dimensional case n ¼ 2. In this case C is a one dimensional curve in the two dimensional space.
The functions f ðxÞ; uðxÞ are assumed to have sufficient smoothness and their values are only provided at grid points of a reg-
ular mesh. Numerical evaluations of delta function integrals (1.1) in two and three dimensions in the above context appear in
many applications of level set methods, see for example [2,11,26].

One approach widely studied in the literature to approximate (1.1) is the numerical quadrature approach. Assume the
values of f ðxÞ;uðxÞ are given at grid points of the following uniform mesh on R2
. All rights reserved.
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fxjgj2Z2 ; xj ¼ xð1Þj1
; xð2Þj2

� �
;

xðkÞjk
¼ xðkÞ0 þ jkh; jk 2 Z; k ¼ 1;2: ð1:2Þ
Then the numerical quadrature methods to delta function integrals (1.1) in two dimension can be generally written in the
form
h2
X
j2Z2

f ðxjÞkrDuðxjÞk~dðxj; uÞ; ð1:3Þ
where rDuðxjÞ is the difference approximation to ruðxjÞ, ~dðxj; uÞ is an approximate delta function which can be defined by
grid point values of u. Utilizing approximate delta functions is related to the regularization technique of the Dirac delta func-
tion which have various applications [4–7,10,12–14,16–18,21,22]. The efficiency of the numerical quadratures (1.3) depends
on the choice of appropriate approximate delta functions. In the work [18] Tornberg and Engquist showed that a common
technique to construct the approximate delta function in (1.3) suffers from Oð1Þ errors. After that different approximate delta
functions have been designed in the literature which yield first or second order numerical quadratures (1.3). In [3] Engquist
et al. proposed a first order accurate approximate delta function based on one dimensional discrete delta functions and a
variable support size formula. They also developed in [3] a second order accurate approximate delta function based on
approximations to product formula for multidimensional delta functions which is more complex to apply. The product for-
mula method following Peskin [12,13] has the advantage that it can achieve any desired accuracy by using one dimensional
discrete delta functions with corresponding discrete moment conditions, as proved in [18]. However the high order version
of the product formula method has not been implemented when the curve C is represented by a level set function. In [15]
Smereka proposed both a first and second order accurate approximate delta function by using a technique for solving elliptic
equations with discontinuous source terms. The proof of accuracy of this approximate delta function is presented in [1]. In
[19] Towers proposed both a first and second order accurate approximate delta function by using difference approximations
to derivatives of the smoothed heaviside function or those of the integral of the heaviside function. The analysis of accuracy
of these methods are considered in [20]. However approximate delta functions higher than second order accuracy for the
numerical quadratures (1.3) have not been designed and implemented yet. Therefore to design numerical quadratures
(1.3) higher than second order accuracy to the delta function integrals(1.1) remains to be studied.

In this paper we design and analyze a class of high order numerical methods to the delta function integrals (1.1) in two
dimension. The strategy of the methods in this paper is different from the numerical quadrature approach. These methods
are constructed by considering the approximation of the restriction of the two dimensional delta function integral in each
mesh cell. This is also a natural strategy. By using this strategy, Min and Gibou designed in [8,9] a second order geometric
integration method for computing (1.1) via decomposing the zero level set C into simplices. Such a strategy has also been
applied to another type of delta function integrals
Z

Rn
aðxÞ

Yn

i¼1

dðbiðxÞÞdx; n ¼ 1;2;3; ð1:4Þ
where the common zero points of the level set functions biðxÞ are essentially finite number of points in the space. Second to
fourth order numerical methods to (1.4) in one to three dimensions have been designed in [23]. In order to obtain suitable
approximation to the restriction of the delta function integral (1.4) in a mesh cell, the methods in [23] involve checking the
existence of common zero points of level set functions and applying the technique of changing interpolation space.

Naturally the methods in this paper also involve checking the existence of zero points of the level set function in the delta
function integral (1.1). Namely we need to check the intersection between a mesh cell and the zero level set C of the level set
function. Our strategy to approximate the restriction of the delta function integral (1.1) in a mesh cell intersecting with C is
based on the fact that the two dimensional delta function integral in the mesh cell can be rewritten as a one dimensional
ordinary integral with the smooth integrand being a one dimensional delta function integral. The transformed one dimen-
sional integral takes one of two forms according to the comparison of the two components of gradient of u in the cell which
can be checked from the mesh point values of u. Therefore high order numerical methods to approximate the mesh cell
restriction of the two dimensional delta function integral (1.1) in principle can be constructed by applying high order numer-
ical quadratures to one dimensional ordinary integrals and high order numerical methods to one dimensional delta function
integrals. The high order numerical quadratures to ordinary integrals are standard. The high order numerical methods to one
dimensional delta function integrals have already been studied [23,24]. In this paper we apply the high order numerical
method designed in [23] to a type of delta function integrals including the one dimensional case. The algorithm so designed
to approximate the mesh cell restrictions of the two dimensional delta function integral (1.1) comprises the numerical meth-
od proposed in this paper. The method contains several sub-algorithms including Newton iteration to solve one dimensional
interpolation polynomials, Numerical quadrature to one dimensional ordinary integrals, difference approximation formula,
interpolation formula and numerical method to approximate one dimensional delta function integrals. We carry out error
analysis for the method proposed in this paper and prove that the method can achieve any desired accuracy to the two
dimensional delta function integrals (1.1) provided the sub-algorithms in the method attain the corresponding accuracy
which is straightforward to fulfill. We also prove the better accuracy of the method in this paper under an assumption on
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the zero level set C of the level set function u. The assumption is satisfied commonly by a smooth closed curve C. The key
point of the error estimates is that the approximation of the two dimensional delta function integral (1.1) in any given mesh
cell may not be accurate enough, while for such a mesh cell there exist several neighboring cells so that the approximate two
dimensional delta function integral restricted to the union of these mesh cells has sufficient accuracy. We implement second
to fourth order numerical methods in this paper and the numerical examples show that these methods achieve or exceed the
expected accuracy indicated by the error analysis. We also present numerical test to demonstrate the advantage of our high
order numerical methods with regard to computational complexity. In this paper we consider the two dimensional case of
the delta function integrals (1.1). Recently we have also extended the idea in this paper to design high order numerical meth-
ods to the delta function integrals (1.1) in three dimensional case [25].

This paper is organized as follows. In Section 2 we discuss the main strategy, numerical implementation and algorithm
description of the method proposed in this paper. In Section 3 we establish the error estimates for our method which show
that the method can achieve any desired accuracy by choosing corresponding accuracy in the sub-algorithms in the method
and has better accuracy under an assumption on the zero level set of the level set function. In Section 4 we present numerical
examples in which second to fourth order methods are shown to achieve or exceed the expected accuracy and efficiency of
high order numerical methods is demonstrated. We conclude the paper in Section 5.

2. High order numerical methods

2.1. Main strategy

Consider the delta function integral (1.1) in two dimensional case
Z
R2

f ðx; yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ2 þ ðuyÞ2

q
dðuðx; yÞÞdxdy: ð2:1Þ
Assume R2 is covered by a uniform mesh ðxi; yjÞ; ði; jÞ 2 Z2 with the mesh size h. Denote
Ii;j ¼
Z yjþ1

yj

Z xiþ1

xi

f ðx; yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ2 þ ðuyÞ2

q
dðuðx; yÞÞdxdy: ð2:2Þ
Then
 Z
R2

f ðx; yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ2 þ ðuyÞ2

q
dðuðx; yÞÞdxdy ¼

X
ði;jÞ2Z2

Ii;j: ð2:3Þ
Therefore the delta function integral (2.1) can be computed by approximating each Ii;j. Let bIi;j be the approximation to Ii;j.
Then our goal is to provide algorithm to yield bIi;j.

If a cell Ci;j ¼ ½xi; xiþ1� � ½yj; yjþ1� is away from the zero level set, then we can just set bIi;j ¼ 0. Therefore we only need to
consider the computation of bIi;j in the case that the cell Ci;j nontrivially intersects with the zero level set. We will discuss
how to check the intersection between a cell and the zero level set in the next subsection. The computation in the nontrivial
cases relies on the observation that the two dimensional delta function integral (2.2) can be formally rewritten as the fol-
lowing two forms
Ii;j ¼
Z xiþ1

xi

Z yjþ1

yj

f ðx; yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ2 þ ðuyÞ2

q
dðuðx; yÞÞdy

 !
dx; ð2:4Þ

Ii;j ¼
Z yjþ1

yj

Z xiþ1

xi

f ðx; yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ2 þ ðuyÞ2

q
dðuðx; yÞÞdx

 !
dy: ð2:5Þ
Namely the two dimensional delta function integral Ii;j can be regarded as a one dimensional ordinary integral with the inte-
grand being a one dimensional delta function integral. Here ordinary integral means the integrand is bounded rather than
delta function. In fact for the nontrivial cases that the cell Ci;j intersecting with the zero level set, at least one of the above two
forms is valid. This will be discussed in detail in the next subsection.

Based on this observation, our idea to approximate Ii;j is to transform the two dimensional delta function integral into the
one dimensional ordinary integral illustrated by (2.4) and (2.5) with the integrand being the one dimensional delta function
integral. Therefore high order numerical method for computing Ii;j can be expected by applying high order numerical quadr-
atures to one dimensional ordinary integral which are standard, and high order numerical methods to one dimensional delta
function integral which have already been developed [23,24].

For the convenience of description, we discuss the case that the form (2.4) is valid. Denote
FðxÞ ¼
Z yjþ1

yj

f ðx; yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ2 þ ðuyÞ2

q
dðuðx; yÞÞdy; xi 6 x 6 xiþ1: ð2:6Þ
Then (2.4) is written to be
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Ii;j ¼
Z xiþ1

xi

FðxÞdx: ð2:7Þ
In order to get high order numerical results by applying numerical quadratures to the one dimensional integral (2.7), the
function FðxÞ needs to have sufficient smoothness. However, this can be untrue. For example we consider the situation
shown in the left part of Fig. 2.1, where the zero level set C cuts through the cell Ci;j and intersects with one horizontal side
and one vertical side. Let ð~x; yjþ1Þ; xi < ~x < xiþ1 be the point on C. Then it is seen that in this situation FðxÞ is zero for x 2 ½xi; ~xÞ
and is nonzero for x 2 ð~x; xiþ1�. Namely FðxÞ is discontinuous at x ¼ ~x. Moreover, it is even possible that FðxÞ has two discon-
tinuity points on the interval ½xi; xiþ1�. We consider the case shown in the right part of Fig. 2.1, where the zero level set C is
nearly parallel to x-axis near the cell Ci;j and intersects with one horizontal side and two vertical sides. Let
ðx0; yjþ1Þ; ðx00; yjþ1Þ; xi < x0 < x00 < xiþ1 be the points on C. It is seen that FðxÞ is zero for x 2 ðx0; x00Þ and is nonzero for
x 2 ½xi; x0Þ [ ðx00; xiþ1�. In this case FðxÞ is discontinuous at x ¼ x0; x00.

Since FðxÞ can be discontinuous on the interval ½xi; xiþ1� with one or more discontinuity points, it is improper to apply
numerical quadrature to (2.7) in order to obtain high order numerical results. To deal with this issue, we can transform
(2.7) into the one dimensional integral with smooth integrand as follows. Since we are discussing that the form (2.4) is valid,
one can see from the next subsection that this implies uy is Oð1Þ away from zero near the cell Ci;j. Thus we can introduce the
definitions
Yi;jðxÞ satisfying that ðx;Yi;jðxÞÞ; x 2 ½xi; xiþ1� are points on C; ð2:8Þ
Ym

i;j ¼ min
x2½xi ;xiþ1 �

Yi;jðxÞ; YM
i;j ¼ max

x2½xi ;xiþ1 �
Yi;jðxÞ; ð2:9Þ

FmðxÞ ¼
Z YM

i;jþh

Ym
i;j�h

f ðx; yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ2 þ ðuyÞ2

q
dðuðx; yÞÞdy; xi 6 x 6 xiþ1; ð2:10Þ

Ki;j ¼ fx 2 ½xi; xiþ1�jYi;jðxÞ 2 ½yj; yjþ1�g: ð2:11Þ
Notice that FmðxÞ is smooth on ½xi; xiþ1� and thus on Ki;j. We have the following equality
Ii;j ¼
Z xiþ1

xi

FðxÞdx ¼
Z

Ki;j

FðxÞdx ¼
Z

Ki;j

FmðxÞdx: ð2:12Þ
Namely by restricting the integral domain, we can represent Ii;j to be the one dimensional integral with the smooth integrand
FmðxÞ. In fact since the two dimensional delta function integral Ii;j represents curve integral, (2.12) implies we transform the
curve integral into the equivalent form of the integral in x-variable. Thus our strategy to approximate Ii;j in the case of the
form (2.4) being valid is to apply high order numerical quadratures to the last form in (2.12).

One additional issue needs to be treated by using the last form of (2.12) instead of (2.7) is to determine the integral do-
main Ki;j. We will use an interval ½xL

i;j; x
R
i;j� contained in ½xi; xiþ1� to approximate Ki;j. The definition of the interval boundary

points will be discussed in detail in the next subsection. Thus our strategy is to set bIi;j to be high order numerical quadrature

to the integral
R xR

i;j

xL
i;j

FmðxÞdx. We mention that it is possible that a single bIi;j yielded by our algorithm is not accurate enough to

approximate Ii;j. For the case shown in the left part of Fig. 2.1, our algorithm gives ½xL
i;j; x

R
i;j� ¼ ½ex; xiþ1� which is exactly the do-

main Ki;j. So in this case bIi;j can be the high order approximation to Ii;j. However for the case shown in the right part of Fig. 2.1,

our algorithm gives ½xL
i;j; x

R
i;j� ¼ ½xi; xiþ1�while in this case Ki;j ¼ ½xi; x0� [ ½x00; xiþ1�. In this case

R xR
i;j

xL
i;j

FmðxÞdx includes the integral on

the small curve segment outside the cell Ci;j. Thus bIi;j cannot be the high order approximation to Ii;j. Instead it can be the high
order approximation to Ii;j þ Ii;jþ1. From the algorithm description in the next subsections we will see that in this case our
algorithm yields bIi;jþ1 ¼ 0. Therefore although bIi;j and bIi;jþ1 are not accurate approximation to Ii;j; Ii;jþ1 respectively in this case,
(xi,yj)

(xi,yj+1)

(xi+1,yj)

(xi+1,yj+1)

(xi,yj)

(xi,yj+1)

(xi+1,yj)

(xi+1,yj+1)

Γ

Γ

Fig. 2.1. Situations in which FðxÞ is nonsmooth on ½xi; xiþ1�.
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their summation can be high order accurate. By this reason the summation
P
ði;jÞ2Z2

bIi;j still can be high order approximation to
(2.3). This is also the key idea used in the proof of the error estimates for our method in Section 3. Namely although the
approximation to the two dimensional delta function integral in a single cell may not be accurate enough, for such a cell
there exist certain neighboring cells so that the approximation to the delta function integral in the union of these cells
has high order accuracy.

The computations of the interval boundary points xL
i;j; x

R
i;j will be discussed in the next subsection. Assume their computed

values to be bxL
i;j; bxR

i;j. Then the numerical quadrature to the integral
RbxR

i;jbxL
i;j

FmðxÞdx which yields the value of bIi;j is written to be
ðx̂R
i;j � x̂L

i;jÞ
XK

k¼1

wkFmðx̂L
i;j þ nkðx̂R

i;j � x̂L
i;jÞÞ; ð2:13Þ
where wk and nk 2 ½0;1� are weights and nodal points of the quadrature rule respectively. For example the fourth order Simp-
son rule satisfies K ¼ 3 and w1 ¼ w3 ¼ 1

6 ;w2 ¼ 4
6 ;n1 ¼ 0;n2 ¼ 1

2 ;n3 ¼ 1.
Therefore for computing bIi;j we need to compute the values of FmðxÞ at several quadrature points which belong to ½xi; xiþ1�.

According to the definition (2.10), the computation of FmðxÞ at each quadrature point corresponds to numerical approxima-
tion to a one dimensional delta function integral. From the definition (2.10) one sees that the delta function in the integrand
is concentrated at y ¼ Yi;jðxÞwhich is the y-component of the zero point of u. The exact value of FmðxÞ is related to the value of
the integrand in (2.10) at this zero point. Since this zero point may not be a grid point and we only have the grid point values
of f and u, we can use interpolation together with difference approximation to approximate the value of FmðxÞ. We will dis-
cuss the computation of FmðxÞ in the next subsection in detail.

In summary our procedure to yield bI i;j is as follows. We only need to treat the nontrivial case that the cell Ci;j intersects

with the zero level set, otherwise we setbIi;j ¼ 0. In the nontrivial cases, we check which one of the two forms (2.4) and (2.5) is
valid. In the case that the form (2.4) is valid, we firstly obtain the computed values x̂L

i;j; x̂
R
i;j of the boundary points of the inter-

val ½xL
i;j; x

R
i;j� which approximates the integral domain Ki;j in (2.12). Then we set bIi;j to be the numerical quadrature toR x̂R

i;jbxL
i;j

FmðxÞdx given by (2.13), with the evaluation of FmðxÞ at nodal points corresponding to numerical approximations to

one dimensional delta function integrals. Similar strategy can be adopted in the case that the form (2.5) is valid.

2.2. Numerical implementation

After introducing the main strategy of our methods, we now discuss the issue of numerical implementation.
Firstly we discuss the check of the intersection between a cell Ci;j and the zero level set. Denote uk;l ¼ uðxk; ylÞ;8ðk; lÞ 2 Z2.

According to the signs of four vertex values ui;j;ui;jþ1;uiþ1;j;uiþ1;jþ1 in the cell, there are following four possible cases for fine
enough mesh

Case CL.

(1) ui;j;ui;jþ1;uiþ1;j; uiþ1;jþ1 have the same sign.
(2) One of ui;j; ui;jþ1;uiþ1;j;uiþ1;jþ1 is zero, the other three have the same sign.
(3) Two of ui;j;ui;jþ1;uiþ1;j;uiþ1;jþ1 are zero, the other two have the same sign.
(4) At least two of ui;j;ui;jþ1;uiþ1;j;uiþ1;jþ1 have opposite signs.
The case that three or four of ui;j;ui;jþ1;uiþ1;j;uiþ1;jþ1 are zero is impossible for fine enough mesh and a smooth zero level set
C. Since the norm of the gradient of the level set function is bounded away from zero near the zero level set. This will also be
used to determine the validity of the forms (2.4) and (2.5) in the following.

Cases (1) and (2) correspond to that the curve C has no or slight intersection with the cell Ci;j, therefore in these cases
naturally we set bIi;j ¼ 0.

Case (4) represents the situation that the curve C nontrivially cuts through the cell Ci;j and in this situation we use the
strategy introduced in the last subsection to calculate bIi;j.

Case (3) is a special case. Without loss of generality we consider the case that ui;j ¼ uiþ1;j ¼ 0 and ui;jþ1;uiþ1;jþ1 have the same
sign. In this case C is nearly parallel to x-axis and juxj < juyj near this cell for reasonably fine mesh. From the definition of xL

i;j; x
R
i;j

which will be given in the following we obtain xL
i;j ¼ xi; xR

i;j ¼ xiþ1 in this case. If we apply the strategy in the last subsection then
the resulting bIi;j is the approximation to

R xiþ1
xi

FmðxÞdx which is Ii;j þ Ii;j�1 in this case. With the same procedure applying to the
cell Ci;j�1 one sees that the resulting bIi;j�1 is the same as bIi;j. Thus bIi;j þbIi;j�1 is the approximation to 2ðIi;j þ Ii;j�1Þ. However we
need bIi;j þbIi;j�1 to be the approximation to Ii;j þ Ii;j�1. Therefore it is seen that case (3) is a special case. In this special case, we
need to setbIi;j to be half of the value yielded by the strategy introduced in the last subsection. By adopting this strategy, in the
above case the sum of resulting bIi;j and bIi;j�1 is the approximation to Ii;j þ Ii;j�1, which is the expected result.

Next we discuss the validity of the two forms (2.4) and (2.5) of Ii;j. This means the validity of the one dimensional delta
function integrals in the two forms. Clearly the form (2.4) is valid provided uyðx; yÞ at zero points of uðx; yÞ near the cell Ci;j are
nonzero. Similarly the validity of the form (2.5) depends on the nonzero of uxðx; yÞ at zero points of uðx; yÞ near the cell Ci;j.
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Since
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ2 þ ðuyÞ2

q
is the normal derivative of uðx; yÞ at its zero level set, which should have Oð1Þ positive lower bound at

the zero level set for a well-defined level set function u. Therefore at the zero points of uðx; yÞ at least one of ux and uy should
be Oð1Þ away from zero. This implies at least one of the two forms (2.4) and (2.5) is valid. To check which of (2.4) and (2.5) is

valid, we can compare ux and uy at the center point xiþxiþ1
2 ;

yjþyjþ1
2

� �
of the cell Ci;j. If at this point juxjP juyj, then the form (2.5)

is valid. Otherwise the form (2.4) is valid. In practical computation, since we only have the grid point values of u, we can
compare the difference approximations to juxj and juyj at center point of the cell. Namely we compare the quantities
~ux
i;j ¼ juiþ1;jþ1 þ uiþ1;j � ui;jþ1 � ui;jj; ð2:14Þ

~uy
i;j ¼ juiþ1;jþ1 þ ui;jþ1 � uiþ1;j � ui;jj: ð2:15Þ
If ~ux
i;j P ~uy

i;j, then the form (2.5) is valid. Otherwise the form (2.4) is valid.
In the following we discuss the case that the form (2.4) is checked to be valid in consistent with the discussion in the last

subsection. The case that the form (2.5) is valid can be similarly treated.
We then discuss the determination of the interval ½xL

i;j; x
R
i;j� to approximate the integral domain Ki;j in (2.12). Ki;j is the pro-

jection to x-axis of the zero level set C restricted to the cell Ci;j. Define
� i;j ¼ fðx; yÞjðx; yÞ being the intersection point between the zero level set C and the edges of the cell Ci;jg: ð2:16Þ

The elements of � i;j are at the boundary of the zero level set C restricted to the cell Ci;j. Thus the x-component of the elements
of � i;j are at the boundary of the set Ki;j. Therefore we can construct the interval ½xL

i;j; x
R
i;j� by defining
xL
i;j ¼ min

ðx;yÞ2� i;j

x; xR
i;j ¼ max

ðx;yÞ2� i;j

x: ð2:17Þ
From the above definition, we have the following strategy to obtain xL
i;j; x

R
i;j.

Strategy 1. Give xL
i;j; x

R
i;j.

xL
i;j ¼ xiþ1

� if ui;jui;jþ1 6 0, then xL
i;j ¼ xi

� else
h if ui;jþ1uiþ1;jþ1 < 0
Let ð~x; yjþ1Þ; xi < ex < xiþ1 be one zero point of u, set xL
i;j ¼minðxL

i;j; ~xÞ
h if ui;juiþ1;j < 0

Let ð~x; yjÞ; xi < ~x < xiþ1 be one zero point of u, set xL

i;j ¼minðxL
i;j; ~xÞ
� end
xR

i;j ¼ xi

� if uiþ1;juiþ1;jþ1 6 0, then xR
i;j ¼ xiþ1

� else
h if ui;jþ1uiþ1;jþ1 < 0
Let ð~x; yjþ1Þ; xi < ~x < xiþ1 be one zero point of u, set xR
i;j ¼maxðxR

i;j; ~xÞ
h if ui;juiþ1;j < 0

Let ð~x; yjÞ; xi < ~x < xiþ1 be one zero point of u, set xR

i;j ¼maxðxR
i;j; ~xÞ
� end
In Strategy 1, when one checks that ui;jþ1uiþ1;jþ1 < 0 or ui;juiþ1;j < 0, then one needs to determine ~x so that ð~x; yjþ1Þ or ð~x; yjÞ
is the zero point of u. Since we only have the grid point values of u, ~x needs to be computed approximately. Naturally one can
choose an interpolation polynomial with same values as u at some grid points, then use Newton iteration to solve the zero
point of the polynomial as the approximation to ~x. Generally the computed ~x has the error OðhRþ1Þ if an Rth order polynomial
is used and the derivative of the polynomial is Oð1Þ away from zero. For example let k ¼ j or jþ 1, the first to third order
interpolation polynomials can be chosen to have values ui;k;uiþ1;k at xi; xiþ1, ui;k;uiþ1;k;uiþ2;k at xi; xiþ1; xiþ2 and
ui�1;k;ui;k;uiþ1;k;uiþ2;k at xi�1; xi; xiþ1; xiþ2 respectively. These polynomials are expressed as follows
P1ðxÞ ¼ ui;k þ ðuiþ1;k � ui;kÞ
x� xi

h
; ð2:18Þ

P2ðxÞ ¼ ui;k þ �3
2

ui;k þ 2uiþ1;k �
1
2

uiþ2;k

� �
x� xi

h
þ 1

2
ui;k � uiþ1;k þ

1
2

uiþ2;k

� �
x� xi

h

� �2
; ð2:19Þ

P3ðxÞ ¼ ui;k þ �1
3

ui�1;k �
1
2

ui;k þ uiþ1;k �
1
6

uiþ2;k

� �
x� xi

h
þ 1

2
ui�1;k � ui;k þ

1
2

uiþ1;k

� �
x� xi

h

� �2

þ �1
6

ui�1;k þ
1
2

ui;k �
1
2

uiþ1;k þ
1
6

uiþ2;k

� �
x� xi

h

� �3
ð2:20Þ



X. Wen / Journal of Computational Physics 228 (2009) 4273–4290 4279
for k ¼ j or jþ 1.
We can use Newton iteration to solve the zero point of the polynomial higher than first order. The initial guess can be

taken to be the zero point of the first order polynomial, namely
xini ¼ xi þ h
�ui;k

uiþ1;k � ui;k

� �
: ð2:21Þ
If the derivative of the function uðx; ykÞ is Oð1Þ away from zero on ½xi; xiþ1�, then the interpolation polynomial is monotone
near the interval ½xi; xiþ1�, and the Newton iteration can correctly converge to the expected zero point. If the derivative of
the function uðx; ykÞ is near zero on ½xi; xiþ1�, it is possible that the interpolation polynomial is non-monotone and there is
another zero point of the polynomial outside ½xi; xiþ1� which the Newton iteration can converge to. Clearly the correct zero
point we need is inside the interval ½xi; xiþ1�. Therefore in this case the Newton iteration does not give approximation to
the expected zero point. Fortunately we will show in Section 3 in the error estimates for our methods that in the case of
the derivative of uðx; ykÞ being small on ½xi; xiþ1�, it is not necessary to obtain accurate approximation to ~x. Therefore in the
case that the iterated values of ~x come outside the interval ½xi; xiþ1� during the Newton iteration which implies the derivative
of uðx; ykÞ is small on the interval, we can just quit the Newton iteration and set the computed ~x to be the initial guess xini. If
the iterated values of ex do not come outside the interval ½xi; xiþ1� during the Newton iteration, then the iteration should cor-
rectly converge to the expected zero point. From the above consideration, we can give the following algorithm to compute ~x
if ui;kuiþ1;k < 0; k ¼ j or jþ 1. In the algorithm we let ~xc denote the computed ~x.

Algorithm I. Give computed ~x
Choose an Rth order interpolation polynomial to uðx; ykÞ near the interval ½xi; xiþ1�. For R ¼ 1;2;3 we can choose the

polynomials in (2.18)–(2.20).
Let the initial guess to be (2.21) and use Newton iteration to compute the zero point of the polynomial.
If the iterated values of the zero point during the Newton iteration come outside the interval ½xi; xiþ1�, then quit the

Newton iteration and set ~xc ¼ xini.
Otherwise set ~xc ¼ xNew, where xNew denotes the computed zero point by the Newton iteration with given tolerance ET .

Namely the absolute value of the polynomial at xNew is less than ET .

With Strategy 1 and Algorithm I, we then can compute xL
i;j; x

R
i;j and obtain their approximate values x̂L

i;j; x̂
R
i;j. The next issue is

to evaluate the values of Fm at nodal points in the quadrature rule (2.13) which yields the value of bIi;j. According to the def-
inition (2.10) this corresponds to numerical approximations to one dimensional delta function integrals. High order numer-
ical methods to approximate one dimensional delta function integrals have already been studied [23,24]. In this paper we
use the numerical method developed in [23] to a type of delta function integrals which include the one dimensional case.

We are considering that the form (2.4) is valid. Recall the definition of Yi;jðxÞ; x 2 ½xi; xiþ1� in (2.8) for this situation. The
exact value of the one dimensional delta function integral (2.10) is given by
FmðxÞ ¼
aðx; Yi;jðxÞÞ
juyðx;Yi;jðxÞÞj

; for x 2 ½xi; xiþ1�; ð2:22Þ
where we denote
aðx; yÞ ¼ f ðx; yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ2 þ ðuyÞ2

q
: ð2:23Þ
The numerical method proposed in [23] is to perform interpolation in the level set function variable space to approximate
(2.22). Since uy is Oð1Þ away from zero near the cell Ci;j, we define the inverse function bY i;jðx; zÞ satisfying
uðx; bY i;jðx; zÞÞ ¼ z; for x 2 ½xi; xiþ1�; z near zero: ð2:24Þ
Observe that
Yi;jðxÞ ¼ bY i;jðx;0Þ; x 2 ½xi; xiþ1�: ð2:25Þ
Introduce the function
bF xðzÞ ¼
aðx; bY i;jðx; zÞÞ
juyðx; bY i;jðx; zÞÞj

; for x 2 ½xi; xiþ1�: ð2:26Þ
Then
 bF xð0Þ ¼ FmðxÞ; ð2:27Þ

bF xðuðx; ykÞÞ ¼
aðx; ykÞ
juyðx; ykÞj

; for k near j ð2:28Þ
using the fact that bY i;jðx;uðx; ykÞÞ ¼ yk.
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The values aðx;ykÞ
juyðx;ykÞj

;8x 2 ½xi; xiþ1� can be approximated from grid point values of a and u. To interpolate aðx; ykÞ we first ob-

tain the approximate grid point values of a by difference approximation. From the definition (2.23) we need the approximate
grid point values of ux;uy, which can be obtained from grid point values of u by difference approximation. Suppose we use a
Tth order difference approximation formula. For example for T ¼ 4 we can use the formula
uxðxl; ykÞ �
1
h
� 1

12
ulþ2;k þ

2
3

ulþ1;k �
2
3

ul�1;k þ
1

12
ul�2;k

� �
; ð2:29Þ
similarly for uy. Denote al;k to be the obtained approximate values of aðxl; ykÞ. Then aðx; ykÞ is interpolated from these approx-
imate grid point values al;k. Suppose we use a Uth order interpolation formula. For example for U ¼ 2;3;4 we can use the
following formulas
aðx; ykÞ � ai;k þ ðaiþ1;k � ai;kÞ�; for U ¼ 2; ð2:30Þ

aðx; ykÞ � ai;k þ �3
2
ai;k þ 2aiþ1;k �

1
2
aiþ2;k

� �
�þ 1

2
ai;k � aiþ1;k þ

1
2
aiþ2;k

� �
�2; for U ¼ 3; ð2:31Þ

aðx; ykÞ � ai;k þ �1
3
ai�1;k �

1
2
ai;k þ aiþ1;k �

1
6
aiþ2;k

� �
�þ 1

2
ai�1;k � ai;k þ

1
2
aiþ1;k

� �
�2

þ �1
6
ai�1;k þ

1
2
ai;k �

1
2
aiþ1;k þ

1
6
aiþ2;k

� �
�3; for U ¼ 4; ð2:32Þ
where
� ¼ x� xi

h
: ð2:33Þ
We already have the approximate grid point values of uy. Then similarly we can interpolate uyðx; ykÞ from approximate
grid point values of uy by a Uth order interpolation formula. We also interpolate uðx; ykÞ from grid point values of u by a
Uth order interpolation formula. Denote the interpolated values of aðx; ykÞ;uyðx; ykÞ and uðx; ykÞ to be aIðx; ykÞ;uI

yðx; ykÞ and
uIðx; ykÞ respectively. From (2.28) one has
bF xðuIðx; ykÞÞ �

aIðx; ykÞ
juI

yðx; ykÞj
� FI

x;k for k near j: ð2:34Þ
Remind that our goal is to compute FmðxÞ at nodal points in the quadrature rule (2.13). From (2.27) and (2.34) it is seen
that we have the (approximate) values of bF x at points uIðx; ykÞ for k near j which compose an irregular mesh near the point
zero, and we need to approximate the value of bF x at zero. Thus the evaluation of the one dimensional delta function integral
(2.10) is equivalent to interpolating bF xð0Þ from the (approximate) irregular grid point values of bF xðzÞ near zero, where the
variable z is essentially the level set function variable. This shows the design principle of the method developed in [23].
The interpolation can be performed by using Newton interpolation. Suppose we use a Vth order interpolation formula.
For V ¼ 2;3;4 the formula take the following forms
FmðxÞ ¼ bF xð0Þ � FI
x;j þ ðF

I
x;jþ1 � FI

x;jÞPj;jþ1; for V ¼ 2; ð2:35Þ

FmðxÞ ¼ bF xð0Þ � FI
x;j þ ðF

I
x;jþ1 � FI

x;jÞPj;jþ1 þ ½ðFI
x;jþ2 � FI

x;jÞPj;jþ2 � ðFI
x;jþ1 � FI

x;jÞPj;jþ1�Pjþ1;jþ2; for V ¼ 3; ð2:36Þ

FmðxÞ ¼ bF xð0Þ � FI
x;j�1 þ ðF

I
x;j � FI

x;j�1ÞPj�1;j þ ½ðFI
x;jþ1 � FI

x;j�1ÞPj�1;jþ1 � ðFI
x;j � FI

x;j�1ÞPj�1;j�Pj;jþ1

þ FI
x;jþ2 � FI

x;j�1

� �
Pj�1;jþ2Pj;jþ2 � ðFI

x;j � FI
x;j�1ÞPj�1;jPj;jþ2

n
� ðFI

x;jþ1 � FI
x;j�1ÞPj�1;jþ1 � ðFI

x;j � FI
x;j�1ÞPj�1;j

�
Pj;jþ1

� 	
Pjþ1;jþ2; for V ¼ 4; ð2:37Þ
where we denote
Pl;l0 ¼
�uIðx; ylÞ

uIðx; yl0 Þ � uIðx; ylÞ
: ð2:38Þ
Summarizing the above discussion, the algorithm to compute FmðxÞ for x 2 ½xi; xiþ1� is given as follows:

Algorithm II. Give computed FmðxÞ.
Use a Tth order difference approximation formula to approximate grid point values of ux;uy from grid point values of u.
Use a Uth order formula to interpolate aðx; ykÞ;uyðx; ykÞ;uðx; ykÞ from approximate or exact grid point values of a;uy;u for

some k near j. Denote the interpolated values to be aIðx; ykÞ;uI
yðx; ykÞ;uIðx; ykÞ, and define FI

x;k as in (2.34).
Use a Vth order Newton interpolation formula to approximate FmðxÞ ¼ bF xð0Þ from approximate irregular grid point values

of bFx. For V ¼ 2;3;4 the formula take the form (2.35)–(2.37).
2.3. Algorithm description

With the discussions of strategy and numerical implementation of our method in the above subsections, we now can
present the algorithm of our method. The algorithm is given by



X. Wen / Journal of Computational Physics 228 (2009) 4273–4290 4281
Algorithm I*. For each cell Ci;j compute bIi;j which is the approximation to Ii;j.
Sum up bIi;j for all mesh cells to give the numerical approximation to the delta function integral (2.1).

In the above algorithm the key algorithm to compute bIi;j for each cell is given as follows:

Algorithm II*. Give bIi;j

According to signs of cell vertex values of u one has four possible cases shown in Case CL in Section 2.1.
For cases (1), (2) set bIi;j ¼ 0.
For case (4) first compare the quantities ~ux

i;j; ~u
y
i;j defined in (2.14) and (2.15).

If eux
i;j < euy

i;j
Set bIi;j to be the quadrature formula (2.13), with x̂L
i;j; x̂

R
i;j given by Strategy 1 in Section 2.1 and Algorithm I in Section 2.2,

and values of FmðxÞ at nodal points computed by Algorithm II in Section 2.2.
If ~ux
i;j P ~uy

i;j
bIi;j can be computed in similar principle based on the form (2.5).
For case (3), set bIi;j to be half of the value given by algorithm for case (4).

Algorithm II* include the following parameters: R; ET ; S; T;U;V , where R and ET are the order of interpolation polynomial
and tolerance in Newton iteration in Algorithm I respectively, S denotes the order of the quadrature rule (2.13), T;U;V are the
order of difference approximation, the order of interpolation formula and the order of Newton interpolation in Algorithm II
respectively. In the next section we will give error estimates for our method given by Algorithms I* and II*. We show that our
method can achieve any desired convergence order by selecting corresponding parameters.

3. Error estimates

In this section we give error estimates for our method given by Algorithms I* and II* which show that our method can
achieve any desired convergence order. We will give the error estimates for our method in general cases, and also prove
the better accuracy of our method when the following assumption on the zero level set C of u holds

Assumption 3.1. There are only finite points denoted by ðXl;YlÞ; l ¼ 1;2; . . . ; L on the zero level set C at which the tangential
vectors are in the direction ð�1;�1Þ. Moreover, 8M > 0, 9N > 0 s.t. for any small h > 0, the points on C at which absolute
value of the slope of the tangential vector belonging to ð1�Mh;1þMhÞ are contained in the area

SL
l¼1ðXl � Nh;

Xl þ NhÞ � ðYl � Nh;Yl þ NhÞ.

Assumption 3.1 is satisfied generally for a smooth closed curve C in two dimensional space. For example the assumption
is satisfied when C is a closed curve with positive mean curvature.

The main theorem we will prove in this section is as follows:

Theorem 3.1. Let m1 ¼minðR; S; T;U;VÞ;m2 ¼minðRþ 1; S; T;U;VÞ, where R; S; T;U;V are parameters in Algorithm II*. Assume
parameter ET in Algorithm I satisfies ET ¼ OðhRþ1Þ. Then the method given by Algorithms I* and II* is m1th order accurate, namely
X
ði;jÞ2Z2

bIi;j �
Z

R2
f ðx; yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ2 þ ðuyÞ2

q
dðuðx; yÞÞdxdy














 ¼ Oðhm1 Þ: ð3:1Þ
Moreover, if Assumption 3.1 on the zero level set C holds, then the method is m2th order accurate, namely
X
ði;jÞ2Z2

bIi;j �
Z

R2
f ðx; yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ2 þ ðuyÞ2

q
dðuðx; yÞÞdxdy














 ¼ Oðhm2 Þ: ð3:2Þ
In order to prove Theorem 3.1 we will use the following Lemmas 3.1–3.7. We firstly introduce some definitions.

Consider a cell Ci;j having intersection with the zero level set C. Recall the definition of Yi;jðxÞ; x 2 ½xi; xiþ1� in (2.8), which is
defined if the quantities ~ux

i;j; ~u
y
i;j given in (2.14) and (2.15) satisfy ~ux

i;j < ~uy
i;j. Similarly if ~ux

i;j P ~uy
i;j, we can define the smooth

function Xi;jðyÞ; y 2 ½yj; yjþ1� as follows:
Xi;jðyÞ satisfying that ðXi;jðyÞ; yÞ; y 2 ½yj; yjþ1� are points on C: ð3:3Þ
Introduce the quantity
di;j ¼
0 if ~ux

i;j < ~uy
i;j;

1 if ~ux
i;j P ~uy

i;j:

(
ð3:4Þ
Define the set
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Di;j ¼
ði; lÞj9x 2 ½xi; xiþ1�; s:t:ðx;Yi;jðxÞÞ 2 Ci;l

� �
if di;j ¼ 0;

ðk; jÞj9y 2 ½yj; yjþ1�; s:t:ðXi;jðyÞ; yÞ 2 Ck;j

� �
if di;j ¼ 1:

(
ð3:5Þ
Let Ni;j denote the number of elements in the set Di;j. Define the subset of Di;j
Ei;j ¼
Di;j if dk;l ¼ di;j;8ðk; lÞ 2 Di;j;

fði; jÞg if 9ðk; lÞ 2 Di;j s:t: dk;l – di;j:



ð3:6Þ
Namely if the elements of Di;j yield the same relation between the two components of the gradient of u, then Ei;j is the same
as Di;j. Otherwise Ei;j contains only the element ði; jÞ. Denote
MI ¼ inf
ðx;yÞ2C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uxðx; yÞð Þ2 þ uyðx; yÞ

� �2
q

; ð3:7Þ
which is a positive quantity.

Lemma 3.1. Ni;j 6 3 for fine enough mesh such that both
~ux

i;j

2h � juxðx; yÞj



 


 and

~uy
i;j

2h � juyðx; yÞj




 



 are less than MI

2
ffiffi
5
p ,

8ðx; yÞ 2 Ck;l;�2 6 k� i; l� j 6 2, where MI is defined in (3.7).

Proof. Without loss of generality we discuss the case di;j ¼ 0. If C does not intersect with the horizontal sides of the cell Ci;j,
then Ni;j ¼ 1. Otherwise without loss of generality assume ðx0; yjþ1Þ is the zero point of u satisfying x0 2 ½xi;

xiþxiþ1
2 �. Due to the

mesh condition stated in the lemma, one has juxðx; yÞj < juyðx; yÞj þ MIffiffi
5
p ;8ðx; yÞ 2 Ci;l; j� 2 6 l 6 jþ 2. Combining this with the

definition (3.7) one obtains j uxðx;Yi;jðxÞÞ
uyðx;Yi;jðxÞÞ

j < 2;8ðx;Yi;jðxÞÞ 2 Ci;l; j� 2 6 l 6 jþ 2. Therefore Yi;jðxÞ 2 ðyj; yjþ2Þ for x 2 ½xi; x0�. If
9x00 2 ½x0; xiþ1� s.t. Yi;jðx00Þ 6 yj, then Yi;jðxÞ 2 ðyj�1; yjþ2Þ for x 2 ½x0; xiþ1�. On the other hand, if 9x00 2 ½x0; xiþ1� s.t. Yi;jðx00ÞP yjþ2,
then Yi;jðxÞ 2 ðyj; yjþ3Þ for x 2 ½x0; xiþ1�. From above discussions, one sees that Ni;j is at most 3. h

Lemma 3.2. The set Ei;j satisfies the following properties

(i) ði; jÞ 2 Ei;j.
(ii) Ek;l ¼ Ei;j;8ðk; lÞ 2 Ei;j.

(iii) Ek;l \ Ei;j ¼ ;; if ðk; lÞ R Ei;j.
Proof. (i) and (ii) can be checked from the definition of Ei;j in (3.6). To see (iii), assume (iii) is untrue, namely
9ðk0; l0Þ 2 Ek;l \ Ei;j when ðk; lÞ R Ei;j. From ðk; lÞ R Ei;j and (i) one has Ek;l – Ei;j. However from ðk0; l0Þ 2 Ek;l \ Ei;j and (ii) one has
Ek;l ¼ Ek0 ;l0 ¼ Ei;j. This is contradiction. Therefore (iii) is true. h

Lemma 3.3. The computed FmðxÞ; x 2 ½xi; xiþ1� given by Algorithm II has the error Oðhm3 Þ with m3 ¼minðT;U;VÞ, where T;U;V
are parameters in Algorithm II.

This lemma can be checked from the description of Algorithm II and the proof is omitted.

Lemma 3.4. If the cell Ci;j belongs to case (4) of Case CL and di;j ¼ 0, then bIi;j given by Algorithm II* satisfies
bIi;j �
Z x̂R

i;j

x̂L
i;j

FmðxÞdx ¼ Oðhm4þ1Þ ð3:8Þ
with
m4 ¼minðS; T;U;VÞ; ð3:9Þ
where S; T;U;V are parameters in Algorithm II*.

This lemma can be obtained by applying Lemma 3.3 and the proof is omitted.

Lemma 3.5. Assume the cell Ci;j belongs to case (4) of Case CL and di;j ¼ 0. If
juxj > M0 ð3:10Þ
near the cell, where M0 is a positive quantity independent of h, and parameters ET ;R in Algorithm I satisfy ET ¼ OðhRþ1Þ, then the
error between xL

i;j; x
R
i;j defined by Strategy 1 and their computed values x̂L

i;j; x̂
R
i;j given by Strategy 1 and Algorithm I are
x̂L
i;j ¼ xL

i;j þ OðhRþ1Þ; x̂R
i;j ¼ xR

i;j þ OðhRþ1Þ: ð3:11Þ
The proof for this lemma is standard and is omitted.

Lemma 3.6. For a cell Ci;j satisfying di;j ¼ 0, it holds
Z xiþ1

xi

FmðxÞdx ¼
X
ðk;lÞ2Di;j

Ik;l: ð3:12Þ
This lemma can be checked from definitions (2.2), (2.10) and (3.5).
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Lemma 3.7. Assume parameters ET ;R in Algorithm I satisfy ET ¼ OðhRþ1Þ. Then bIk;l for ðk; lÞ adjacent to ði; jÞ yielded by Algorithm
II* have the following error estimates
X

ðk;lÞ2Ei;j

ðbIk;l � Ik;lÞ ¼
Oðhm4þ1Þ if Ei;j ¼ Di;j;

Oðhm4þ1Þ þ OðhRþ1Þ if Ei;j – Di;j;

(
; ð3:13Þ
where m4 is defined in (3.9).

The proof of this lemma is relatively long and is presented in the Appendix. In the case Ei;j ¼ Di;j and the case di;j ¼ 0 for
example, the strategy is to prove that

P
ðk;lÞ2Ei;j

bIk;l is the high order approximation to
R xiþ1

xi
FmðxÞdx which according to Lemma

3.6 is just
P
ðk;lÞ2Ei;j

Ik;l. In the case Ei;j – Di;j one needs to additionally consider the error between the interval boundary points
xL

i;j; x
R
i;j and their computed values x̂L

i;j; x̂
R
i;j.

Remark 3.1. From the definition (3.6), the case Ei;j ¼ Di;j implies Ei;j can contain the index ði; jÞ as well as its neighboring
ones. Therefore Lemma 3.7 ensures that the summation

P
ðk;lÞ2Ei;j

bIk;l is the high order accurate approximation to
P
ðk;lÞ2Ei;j

Ik;l,
while each bIk;l is not necessarily accurate enough to approximate Ik;l. This is the key point in the proof of error estimates for
our method, as mentioned in Sections 1 and 2.1. Compared with the first case in the error estimate (3.13), the extra term
OðhRþ1Þ in the second case arises from the approximation to the intersection points xL

k;l; x
R
k;l between the zero level set C and

the edges of the cells. In the first case, the errors of computations of xL
k;l; x

R
k;l are canceled among the cells Ck;l for ðk; lÞ 2 Ei;j

since these cells have the same choice among the two forms (2.4) and (2.5). By using the error estimate (3.13) we can obtain
in Theorem 3.1 that our method has better accuracy under Assumption 3.1 than general cases. Since we can show that under
Assumption 3.1 the number of cells Ci;j such that Ei;j – Di;j is finite. Namely there are only finite cells having different choice
among the two forms (2.4), (2.5) compared with neighboring cells. Therefore the error term OðhRþ1Þ directly passes to the
error estimate of the method without multiplying by Oð1hÞ which is the number of cells essentially intersecting with the zero
level set C.

With the above preparation we now give the proof of the main theorem on the error estimates for our method.

Proof of Theorem 3.1. Denote
SU ¼ fðk; lÞj the cell Ck;l contains points on Cg: ð3:14Þ
According to definition of Ii;j and Algorithm II*, for any ði; jÞ R SU one has Ii;j ¼ bIi;j ¼ 0. Therefore
Z
R2

f ðx; yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ2 þ ðuyÞ2

q
dðuðx; yÞÞdxdy ¼

X
ði;jÞ2SU

Ii;j; ð3:15Þ

X
ði;jÞ2Z2

bIi;j ¼
X
ði;jÞ2SU

bIi;j: ð3:16Þ
Next we prove
X
ði;jÞ2SU

Ii;j ¼
X
ði;jÞ2SU

1
Ni;j

X
ðk;lÞ2Ei;j

Ik;l

0@ 1A; ð3:17Þ

X
ði;jÞ2SU

bIi;j ¼
X
ði;jÞ2SU

1
Ni;j

X
ðk;lÞ2Ei;j

bIk;l

0@ 1A: ð3:18Þ
According to definition of Ei;j, any element in Ei;j belongs to SU . Therefore the right hand side of (3.17) can be written to be
X
ði;jÞ2SU

ci;jIi;j: ð3:19Þ
To prove (3.17) we need to check that ci;j ¼ 1 in (3.19). 8ði0; j0Þ 2 SU , according to (iii) in Lemma 3.2 one has thatP
ði;jÞR Ei0 ;j0

1
Ni;j
ð
P
ðk;lÞ2Ei;j

Ik;lÞ does not contain the term Ii0 ;j0 . Therefore the coefficient before the term Ii0 ;j0 in the expression0 1
X
ði;jÞ2Ei0 ;j0

1
Ni;j

X
ðk;lÞ2Ei;j

Ik;l
@ A ð3:20Þ
is also ci0 ;j0 . According to (ii) in Lemma 3.2, (3.20) is justX

ðk;lÞ2Ei0 ;j0

Ik;l: ð3:21Þ
Therefore ci0 ;j0 ¼ 1;8ði0; j0Þ 2 SU . Thus (3.17) is proved. Similarly (3.18) can be proved.
Now utilizing (3.15)–(3.18) and applying Lemma 3.7 one obtains
X

ði;jÞ2Z2

bIi;j �
Z

R2
f ðx; yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ2 þ ðuyÞ2

q
dðuðx; yÞÞdxdy














 ¼

X
ði;jÞ2SU

1
Ni;j

X
ðk;lÞ2Ei;j

ðbIk;l � Ik;lÞ

24 35












 ¼ NV OðhRþ1Þ þ NUOðhm4þ1Þ; ð3:22Þ
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where NU denotes the number of elements in SU , and NV denotes the number of elements in the set
SV ¼ fðk; lÞ 2 SU jEk;l – Dk;lg: ð3:23Þ
One has NU ¼ O 1
h

� �
and NV 6 NU . Therefore
NV OðhRþ1Þ þ NUOðhm4þ1Þ ¼ OðhRÞ þ Oðhm4 Þ: ð3:24Þ
Combining (3.22) and (3.24) one obtains the estimates (3.1).
Next we prove the estimates (3.2) under Assumption 3.1 on the zero level set C. We need to estimate NV in (3.22).

8ði; jÞ 2 SV , we consider the case di;j ¼ 0, namely ~ux
i;j < ~uy

i;j. Then 9ði; lÞ 2 Di;j s.t. ~ux
i;l P ~uy

i;l. Since ~ux
i;k; ~u

y
i;k are second order

approximation to juxðxiþ1
2
; ykþ1

2
Þj; juyðxiþ1

2
; ykþ1

2
Þj, where xiþ1

2
¼ xiþxiþ1

2 ; ykþ1
2
¼ ykþykþ1

2 , at least one of the following two cases occurs

(I) juxðxiþ1
2
; yjþ1

2
Þj � juyðxiþ1

2
; yjþ1

2
Þj and juxðxiþ1

2
; ylþ1

2
Þj � juyðxiþ1

2
; ylþ1

2
Þj have opposite signs.

(II) One of juxðxiþ1
2
; yjþ1

2
Þj � juyðxiþ1

2
; yjþ1

2
Þj and juxðxiþ1

2
; ylþ1

2
Þj � juyðxiþ1

2
; ylþ1

2
Þj is Oðh2Þ.

Denote Yiþ1
2;j
¼ Yi;jðxiþ1

2
Þ. In both cases, we have
ux xiþ1
2
;Yiþ1

2;j

� �


 


� uy xiþ1
2
; Yiþ1

2;j

� �


 





 


 6 My
SNi;jhþ Oðh2Þ 6 6My

Sh ð3:25Þ
for fine enough mesh such that Oðh2Þ 6 3My
Sh, where My

S denotes
My
S ¼ sup

ðx;yÞ2CS

juxyðx; yÞj þ sup
ðx;yÞ2CS

juyyðx; yÞj ð3:26Þ
with
CS ¼
[
ði;jÞ2SU

Ci;j: ð3:27Þ
Similarly to the deduction of (A.19) in the Appendix we have
uy xiþ1
2
;Yiþ1

2;j

� �


 


P MIffiffiffi
5
p ð3:28Þ
for reasonably fine mesh.
Combining (3.25) and (3.28) one obtains
uxðxiþ1
2
;Yiþ1

2;j
Þ

uyðxiþ1
2
;Yiþ1

2;j
Þ












� 1












 6 6

ffiffiffi
5
p My

S

MI
h: ð3:29Þ
Namely the absolute value of the slope of the tangential vector of C at ðxiþ1
2
;Yiþ1

2;j
Þ belongs to ð1� 6

ffiffiffi
5
p My

S
MI

h;1þ 6
ffiffiffi
5
p My

S
MI

hÞ.
Applying Assumption 3.1, 9N1 > 0 s.t. ðxiþ1

2
;Yiþ1

2;j
Þ 2

SL
l¼1ðXl � N1h;Xl þ N1hÞ � ðYl � N1h;Yl þ N1hÞ. Similarly to the proof of

Lemma 3.1 one has that yj�1 < Yiþ1
2;j
< yjþ2 for reasonably fine mesh since ~ux

i;j < ~uy
i;j. Therefore
Ci;j 	
[L
l¼1

ðXl � ðN1 þ 2Þh;Xl þ ðN1 þ 2ÞhÞ � ðYl � ðN1 þ 2Þh; Yl þ ðN1 þ 2ÞhÞ; 8ði; jÞ 2 SV ;di;j ¼ 0: ð3:30Þ
Similarly for the case di;j ¼ 1, one can deduce
Ci;j 	
[L
l¼1

ðXl � ðN2 þ 2Þh;Xl þ ðN2 þ 2ÞhÞ � ðYl � ðN2 þ 2Þh; Yl þ ðN2 þ 2ÞhÞ; 8ði; jÞ 2 SV ;di;j ¼ 1; ð3:31Þ
where N2 is the value of N in Assumption 3.1 corresponding to M ¼ 6
ffiffiffi
5
p Mx

S
MI

, with Mx
S denoting
Mx
S ¼ sup

ðx;yÞ2CS

uxxðx; yÞj j þ sup
ðx;yÞ2CS

uxyðx; yÞ


 

 ð3:32Þ
and CS defined in (3.27).
Denote N3 ¼maxðN1;N2Þ. Then one has
Ci;j 	
[L
l¼1

ðXl � ðN3 þ 2Þh;Xl þ ðN3 þ 2ÞhÞ � ðYl � ðN3 þ 2Þh; Yl þ ðN3 þ 2ÞhÞ; 8ði; jÞ 2 SV : ð3:33Þ
Therefore NV as the number of elements in SV should be no more than 4ðN3 þ 2Þ2L which is finite independent of h. Thus
NV OðhRþ1Þ þ NUOðhm4þ1Þ ¼ OðhRþ1Þ þ Oðhm4 Þ: ð3:34Þ
Combining (3.22) and (3.34) one obtains the estimates (3.2) under Assumption 3.1. h
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4. Numerical examples

In this section we present numerical examples to show the accuracy of our methods. In the following examples we use
Simpson rule in the numerical quadrature (2.13), namely we choose S ¼ 4 in Algorithm II*. We choose T ¼ 4 in Algorithm II*

by using the fourth order difference approximation formula such as (2.29). For other parameters in Algorithm II* we test the
following three set of choices:

Method A: R ¼ 1; ET ¼ h2
;U ¼ V ¼ 2,

Method B: R ¼ 2; ET ¼ h3
;U ¼ V ¼ 3,

Method C: R ¼ 3; ET ¼ h4
;U ¼ V ¼ 4.

In the first example the level set function does not satisfy Assumption 3.1 and has low regularity. Thus numerical meth-
ods cannot achieve higher than second order accuracy in this example. In the other examples the level set functions are
smooth and satisfy Assumption 3.1. According to Theorem 3.1, methods A, B, C have second to fourth order accuracy respec-
tively for these examples. We will see that these methods achieve or are better than the expected accuracy in these exam-
ples. We will also demonstrate the advantage of using high order numerical methods for computing (2.1) in the last example.

Example 4.1. This is an example tested in [3]. Let dðC; x; yÞ be the signed distance function to the capsule shaped curve
appearing in Fig. 1 of [3] with a ¼ 0:1

ffiffiffi
2
p

; L ¼ 1:4 and uðx; yÞ ¼ dðC; x; yÞðsinð4pxÞ þ 2Þðcosð2pyÞ þ 1:6Þ; f ðx; yÞ ¼ ref 
 nC,
where ~f ðx; yÞ ¼ cosðxÞ sinðyÞ, and nC is the normal vector to C. The exact value of (2.1) is zero. For a given mesh size we
randomly shift the uniform mesh in the x and y directions for 50 times. Table 4.1 presents the averaged absolute errors of the
three methods over the 50 trials. The last column in the table presents the estimated convergence rates. The level set
function in this example does not satisfy Assumption 3.1. In this case if the level set function is smooth, then methods A, B, C
have first to third order accuracy according to Theorem 3.1. However the level set function in this example has low
regularity. Therefore numerical methods should not achieve higher than second order accuracy in this example. One sees
that the estimated convergence rates shown in Table 4.1 are first, more than second and third order respectively. Moreover
from the results on fine meshes one sees that method C is just more than second order accuracy. This matches with the fact
that the low regularity of the level set function in this example prevents numerical methods to achieve higher than second
order accuracy.

Example 4.2. This is an example tested in [15]. Let uðx; yÞ ¼ x2 þ y2 � 1; f ðx; yÞ ¼ 3x2 � y2. The exact value of (2.1) is 2p. Table
4.2 presents the averaged relative errors of the three methods over 50 trials in which the uniform computational mesh is
randomly shifted in the x and y directions. One sees that methods A, C achieve the expected second and fourth order accu-
racy, while method B is better than the expected third order accuracy. The better performance of method B is related to the
fact that the level set function uðx; yÞ in this test is a second order polynomial. Therefore second or higher order interpolation
Table 4.1
Example 4.1, averaged absolute errors of methods A, B, C.

Mesh size 0.05 0.025 0.0125 0.00625 0.003125 0.0015625 Re

Method A 1.05E�2 5.13E�3 2.19E�3 1.10E�3 5.37E�4 2.53E�4 1.08
Method B 4.74E�3 5.86E�4 6.63E�5 1.48E�5 2.93E�6 7.03E�7 2.53
Method C 5.19E�2 2.09E�4 3.19E�5 8.73E�6 1.93E�6 3.59E�7 3.08

Table 4.2
Example 4.2, averaged relative errors of methods A, B, C, uðx; yÞ ¼ x2 þ y2 � 1.

Mesh size 0.1 0.05 0.025 0.0125 0.00625 0.003125 Re

Method A 7.59E�4 1.75E�4 4.12E�5 9.90E�6 2.62E�6 6.46E�7 2.04
method B 1.11E�4 8.63E�6 4.26E�7 2.70E�8 1.38E�9 7.33E�11 4.13
method C 3.93E�5 2.28E�6 1.43E�7 8.78E�9 5.50E�10 3.44E�11 4.02

Table 4.3
Example 4.2, averaged relative errors of methods A, B, C, uðx; yÞ ¼ ex2þy2�1 � 1.

Mesh size 0.1 0.05 0.025 0.0125 0.00625 0.003125 Re

Method A 1.31E�3 3.56E�4 9.03E�5 2.29E�5 5.77E�6 1.43E�6 1.97
method B 1.79E�4 2.34E�5 2.54E�6 1.42E�7 3.32E�8 4.57E�9 3.11
method C 5.58E�5 3.00E�6 1.85E�7 1.15E�8 7.23E�10 4.62E�11 4.03



Table 4.4
Example 4.3, averaged relative errors of methods A, B, C, uðx; yÞ ¼ x2

ð1:5Þ2
þ y2

ð0:75Þ2
� 1.

Mesh size 0.1 0.05 0.025 0.0125 0.00625 0.003125 Re

Method A 1.45E�3 3.31E�4 7.74E�5 2.18E�5 5.07E�6 1.35E�6 2.01
method B 5.61E�4 2.78E�5 1.66E�6 8.81E�8 6.11E�9 4.30E�10 4.06
method C 5.26E�4 2.73E�5 1.58E�6 1.00E�7 6.37E�9 4.13E�10 4.05
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polynomial as well as third or higher order interpolation formula to this function actually yield exact results. As a compar-
ison, Table 4.3 presents the same type of errors of the three methods when choosing the level set function
uðx; yÞ ¼ ex2þy2�1 � 1 and the same weight function. In this test one sees that the three methods give the expected conver-
gence rates.

Example 4.3. This is an example tested in [15]. Let uðx; yÞ ¼ x2

ð1:5Þ2
þ y2

ð0:75Þ2
� 1; f ðx; yÞ ¼ 1. The exact value of (2.1) is

� 7:26633616541076. Table 4.4 presents the averaged relative errors of the three methods over 50 trials in which the uni-
form computational mesh is randomly shifted in the x and y directions and rotated. As in Example 4.2, methods A, C achieve
the expected accuracy while method B is better than the expected accuracy since the level set function uðx; yÞ is a second

order polynomial. We then choose the level set function uðx; yÞ ¼ e
x2

ð1:5Þ2
þ y2

ð0:75Þ2
�1 � 1 and the same weight function, and present

the same type of errors of the three methods in Table 4.5. In this test methods A, C achieve second and fourth order accuracy,
and method B is less than fourth order accuracy. By observing the results on fine meshes one sees that method B is actually
third order accuracy, matching with the expected result given by Theorem 3.1.

Example 4.4. This is an example tested in [19]. Let uðx; yÞ ¼ x2

9 þ
y2

4 � 1; f ðx; yÞ ¼ r 
 ðruðx; yÞ=kruðx; yÞkÞ. The exact value of
(2.1) is 2p. The grid point values of f ðx; yÞ are evaluated using the fourth order difference approximation such as (2.29) to
simulate practical applications in which the analytical expression of uðx; yÞ is unknown. Table 4.6 presents the averaged rel-
ative errors of the three numerical methods over 50 trials in which the uniform computational mesh is rotated by 45� and
Table 4.5
Example 4.3, averaged relative errors of methods A, B, C, uðx; yÞ ¼ e

x2

ð1:5Þ2
þ y2

ð0:75Þ2
�1 � 1.

Mesh size 0.1 0.05 0.025 0.0125 0.00625 0.003125 Re

Method A 1.47E�3 3.18E�4 9.21E�5 1.93E�5 4.96E�6 1.14E�6 2.06
method B 5.70E�4 3.14E�5 2.17E�6 1.90E�7 2.48E�8 3.04E�9 3.49
method C 8.28E�4 4.09E�5 2.58E�6 1.60E�7 9.52E�9 6.02E�10 4.06

Table 4.6
Example 4.4, averaged relative errors of methods A, B, C, uðx; yÞ ¼ x2

9 þ
y2

4 � 1.

Mesh size 0.2 0.1 0.05 0.025 0.0125 0.00625 Re

Method A 3.14E�3 7.78E�4 1.94E�4 4.87E�5 1.21E�5 3.01E�6 2
method B 1.20E�3 2.68E�4 6.54E�5 2.65E�6 1.18E�7 8.76E�9 3.53
method C 6.87E�4 2.13E�5 1.07E�6 5.62E�8 3.47E�9 2.17E�10 4.28

Table 4.7
Example 4.4, averaged relative errors of methods A, B, C, uðx; yÞ ¼ e

x2
9 þ

y2

4 �1 � 1.

Mesh size 0.2 0.1 0.05 0.025 0.0125 0.00625 Re

Method A 3.95E�3 1.01E�3 2.50E�4 6.19E�5 1.54E�5 3.94E�6 2
method B 2.12E�3 4.64E�4 2.65E�5 1.54E�6 5.74E�8 5.91E�9 3.87
method C 8.44E�4 4.04E�5 2.38E�6 1.46E�7 9.14E�9 5.72E�10 4.08

Table 4.8
Example 4.5, averaged relative errors of methods A, B, C.

Mesh size 0.1 0.05 0.025 0.0125 0.00625 0.003125 Re

Method A 4.24E�3 1.44E�3 2.49E�4 7.71E�5 1.87E�5 4.65E�6 1.99
method B 3.22E�3 2.49E�4 3.31E�5 3.48E�6 4.43E�7 6.99E�8 3.09
method C 1.30E�3 3.24E�5 1.30E�6 7.31E�8 3.08E�9 2.11E�10 4.49
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randomly shifted in the x and y directions. Similar phenomenon to previous examples are observed. Methods A, C achieve the
expected accuracy while method B is better than the expected third order accuracy. We then test choosing the level set func-

tion uðx; yÞ ¼ e
x2
9 þ

y2
4 �1 � 1 and the same weight function. Table 4.7 presents the same type of errors of the three methods. In

this test methods A, C achieve the expected second and fourth order accuracy and method B is still better than third order
accuracy. In comparison, method B is less accurate than method C.

Example 4.5. Let uðx; yÞ ¼ e
x2

ð1:5Þ2
þ y2

ð0:75Þ2
�1 � 1; f ðx; yÞ ¼ 3xþ y2. The exact value of (2.1) is � 2:37032870455484. Table 4.8 pre-

sents the averaged relative errors of the three methods over 50 trials in which the uniform computational mesh is randomly
shifted in the x and y directions and rotated. The methods A, B, C are observed to be second to fourth order accurate respec-
tively as ensured by Theorem 3.1.

We also test the computational complexity of our methods in this example. As a comparison we also present the results
for the approximate delta function with a variable support size formula proposed in [3] using the linear hat discrete delta
function. We call this method as method D. As shown in [3] this method is slightly better than first order accurate. We test
the mesh sizes from 0.05 to 0.0015625. We denote log10ðjEjÞ to be the log10 of the averaged relative error and define the rel-
ative time to be the actual computational time divided by the computational time used by method D on the most course
mesh. Fig. 4.1 shows the relation between log10ðjEjÞ and the relative time for different methods. It is obvious that method
with higher order accuracy has higher efficiency. Namely the method with higher order accuracy achieves much better accu-
racy using the same computational time. It is even observed from the results on fine meshes that the fourth order method C
uses less computational time than method D when using the same mesh size. Therefore the advantage of using high order
numerical methods for computing the delta function integrals (2.1) is demonstrated.

5. Conclusion

In this paper we studied a class of high order numerical methods to delta function integrals appearing in level set meth-
ods in two dimensional case. The methods were constructed by considering the approximation of the delta function integral
restricted to mesh cells. In each mesh cell the two dimensional delta function integral can be rewritten as a one dimensional
ordinary integral with the smooth integrand being a one dimensional delta function integral. The form of the one dimen-
sional integral takes one of two choices according to the comparison of the two components of gradient of the level set func-
tion which can be checked from the mesh point values of the level set function. Consequently the mesh cell restriction of the
two dimensional delta function integral were approximated by applying standard one dimensional high order numerical
quadratures and high order numerical methods to delta function integrals designed in [23] for the one dimensional case.
The algorithm designed under such principle to approximate the mesh cell restrictions of the two dimensional delta function
integral (2.1) comprises the numerical method proposed in this paper. The method contains several sub-algorithms includ-
ing Newton iteration to solve one dimensional interpolation polynomials, Numerical quadrature to one dimensional ordinary
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integrals, difference approximation formula, interpolation formula and numerical method to approximate one dimensional
delta function integrals. We established error estimates for the proposed method which show that the method can achieve
any desired accuracy by choosing the corresponding accuracy in the sub-algorithms of the method. We also proved that the
method has better accuracy under an assumption on the zero level set of the level set function which is satisfied commonly
by a smooth closed zero level set. We presented numerical examples in which second to fourth order methods were imple-
mented and shown to achieve or exceed the expected accuracy indicated by the error analysis. The advantage of using high
order numerical methods for computing the two dimensional delta function integrals was also demonstrated by the numer-
ical test. We considered the two dimensional case of the delta function integrals (1.1) in this paper. Recently the idea in this
paper has also been extended to develop high order numerical methods to the delta function integrals (1.1) in three dimen-
sional case [25].

Appendix A

In this appendix we give the proof of Lemma 3.7.
Proof. We prove (3.13) for the case that di;j ¼ 0. The case di;j ¼ 1 can be similarly analyzed.
We now prove the first part in (3.13) in the case of Ei;j ¼ Di;j. The discussions are classified according to value of Ni;j which

is no more than 3 by Lemma 3.1.
If Ni;j ¼ 1, namely Di;j ¼ fði; jÞg, then yj < Yi;jðxÞ < yjþ1; for x 2 ½xi; xiþ1�. In this case according to Strategy 1 one has

x̂L
i;j ¼ xL

i;j ¼ xi; x̂R
i;j ¼ xR

i;j ¼ xiþ1. According to Lemmas 3.4 and 3.6 one has
bIi;j ¼
Z x̂R

i;j

x̂L
i;j

FmðxÞdxþ Oðhm4þ1Þ ¼
Z xiþ1

xi

FmðxÞdxþ Oðhm4þ1Þ ¼ Ii;j þ Oðhm4þ1Þ: ðA:1Þ
If Ni;j ¼ 2, then the two cells corresponding to the elements in Di;j are adjacent since C is smooth. Without loss of gener-
ality we assume the two elements in Di;j are ði; jÞ and ði; jþ 1Þ. Denote
bY i ¼ Yi;jðxiÞ; bY iþ1 ¼ Yi;jðxiþ1Þ: ðA:2Þ
If ðbY i � yjþ1ÞðbY iþ1 � yjþ1Þ < 0, without loss of generality we consider the case bY i > yjþ1;
bY iþ1 < yjþ1. According to Strategy 1

and Algorithm I one has x̂L
i;jþ1 ¼ xi; xi < x̂R

i;jþ1 ¼ x̂L
i;j < xiþ1; x̂R

i;j ¼ xiþ1. Utilizing Lemmas 3.4 and 3.6 one has
X
ðk;lÞ2Di;j

bIk;l ¼
Z x̂R

i;jþ1

x̂L
i;jþ1

FmðxÞdxþ
Z x̂R

i;j

x̂L
i;j

FmðxÞdxþ Oðhm4þ1Þ ¼
Z xiþ1

xi

FmðxÞdxþ Oðhm4þ1Þ ¼
X
ðk;lÞ2Di;j

Ik;l þ Oðhm4þ1Þ: ðA:3Þ
If ðbY i � yjþ1ÞðbY iþ1 � yjþ1ÞP 0, we classify two cases.

(I) bY i ¼ bY iþ1 ¼ yjþ1.
(II) bY i – yjþ1 or bY iþ1 – yjþ1.

For case (I), Strategy 1 yields x̂L
i;j ¼ x̂L

i;jþ1 ¼ xi; x̂R
i;j ¼ x̂R

i;jþ1 ¼ xiþ1. In this case the cells Ci;j;Ci;jþ1 belong to case (3) of Case CL
according to signs of cell vertex values of u. Therefore from Algorithm II* and Lemma 3.4 one has
bIi;j ¼ bIi;jþ1 ¼
1
2

Z xiþ1

xi

FmðxÞdxþ Oðhm4þ1Þ; ðA:4Þ
which yields
X
ðk;lÞ2Di;j

bIk;l ¼
Z xiþ1

xi

FmðxÞdxþ Oðhm4þ1Þ ¼
X
ðk;lÞ2Di;j

Ik;l þ Oðhm4þ1Þ: ðA:5Þ
For case (II), without loss of generality we consider bY i < yjþ1;
bY iþ1 6 yjþ1. Then the cell Ci;jþ1 belongs to case (1) or (2) of

Case CL, therefore
bIi;jþ1 ¼ 0: ðA:6Þ
The cell Ci;j belongs to case (4) of Case CL. Strategy 1 yields x̂L
i;j ¼ xi; x̂R

i;j ¼ xiþ1. From Algorithm II* and Lemma 3.4 one has
bIi;j ¼
Z xiþ1

xi

FmðxÞdxþ Oðhm4þ1Þ: ðA:7Þ
From (A.6) and (A.7) one also obtains (A.5) for case (II).
If Ni;j ¼ 3, without loss of generality we assume the three adjacent elements in Di;j are ði; jÞ; ði; jþ 1Þ; ði; jþ 2Þ. Since the

curve ðx;Yi;jðxÞÞ; x 2 ½xi; xiþ1� occupies three cells, one has
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9x0 2 ½xi; xiþ1�; s:t:
dYi;jðx0Þ

dx





 



 P 1: ðA:8Þ
Combining this with (3.7) gives juxðx0; Yi;jðx0ÞÞjP MIffiffi
2
p . For fine enough mesh such that
uxðx; yÞj jP MI

2
ffiffiffi
2
p ; for ðx; yÞ 2

[
ði;lÞ2Di;j

Ci;l; ðA:9Þ
then Yi;jðxÞ is monotone on ½xi; xiþ1�. Thus one of bY i; bY iþ1 is no less than yjþ2 and another one is no more than yjþ1. Without loss
of generality we consider bY i P yjþ2;

bY iþ1 6 yjþ1. If bY i ¼ yjþ2;
bY iþ1 ¼ yjþ1, then (A.5) can be deduced following discussions for

the case Ni;j ¼ 1. If bY i ¼ yjþ2;
bY iþ1 < yjþ1 or bY i > yjþ2;

bY iþ1 ¼ yjþ1, then (A.5) can be deduced following discussions for the case
Ni;j ¼ 2. If bY i > yjþ2;

bY iþ1 < yjþ1, then Strategy 1 and Algorithm I yields
x̂L
i;jþ2 ¼ xi; x̂R

i;j ¼ xiþ1; ðA:10Þ
xi < x̂R

i;jþ2; x̂L
i;j < xiþ1; ðA:11Þ

x̂L
i;jþ1 ¼ min x̂R

i;jþ2; x̂
L
i;j

� �
; x̂R

i;jþ1 ¼ max x̂R
i;jþ2; x̂

L
i;j

� �
: ðA:12Þ
Moreover we have
x̂R
i;jþ2 < x̂L

i;j for fine enough mesh stated below: ðA:13Þ
This can be seen as follows. According to Strategy 1, xR
i;jþ2; x

L
i;j satisfy
Yi;jðxR
i;jþ2Þ ¼ yjþ2; Yi;jðxL

i;jÞ ¼ yjþ1: ðA:14Þ
Assume the mesh is fine enough to satisfy the condition stated in Lemma 3.1 for ðx; yÞ 2
S
ði;lÞ2Di;j

Ci;l. Following the same
deduction as in the proof of Lemma 3.1 one has j dYi;jðxÞ

dx j < 2 for x 2 ½xi; xiþ1�. Therefore
xL
i;j > xR

i;jþ2 þ
h
2
: ðA:15Þ
Using the condition (A.9) and applying Lemma 3.5 to cells Ci;j and Ci;jþ2 one has
x̂R
i;jþ2 ¼ xR

i;jþ2 þ OðhRþ1Þ; x̂L
i;j ¼ xL

i;j þ OðhRþ1Þ with R P 1: ðA:16Þ
Combining (A.15) and (A.16) one obtains (A.13).
From (A.11), (A.12) and (A.13) one has
xi < x̂R
i;jþ2 ¼ x̂L

i;jþ1 < x̂R
i;jþ1 ¼ x̂L

i;j < xiþ1: ðA:17Þ
Utilizing (A.10) and (A.17), according to Lemmas 3.4 and 3.6 one has
X
ðk;lÞ2Di;j

bIk;l ¼
Z x̂R

i;jþ2

x̂L
i;jþ2

FmðxÞdxþ
Z x̂R

i;jþ1

x̂L
i;jþ1

FmðxÞdxþ
Z x̂R

i;j

x̂L
i;j

FmðxÞdxþ Oðhm4þ1Þ ¼
Z xiþ1

xi

FmðxÞdxþ Oðhm4þ1Þ

¼
X
ðk;lÞ2Di;j

Ik;l þ Oðhm4þ1Þ: ðA:18Þ
From the above discussions, we have proved that for all possible cases Ni;j ¼ 1;2 or 3, (A.5) can always be deduced, which
proves the first part in (3.13).

We then prove the second part in (3.13). If Ei;j – Di;j, according to definition (3.6) we have Ei;j ¼ fði; jÞg and

9ði; lÞ 2 Di;j s:t: di;l ¼ 1 – di;j ¼ 0. Assume the mesh is fine enough such that both j
~ux

i;l

2h � juxðx; yÞjj and j
~uy

i;l

2h � juyðx; yÞjj are less

than MI

2
ffiffi
5
p for ðx; yÞ 2

S
ði;kÞ2Di;j

Ci;k. From eux
i;l P euy

i;l and using similar deduction in the proof of Lemma 3.1 one gets
juxðx;Yi;jðxÞÞjP
MIffiffiffi

5
p ; 8ðx;Yi;jðxÞÞ 2

[
ði;kÞ2Di;j

Ci;k: ðA:19Þ
Therefore Yi;jðxÞ is monotone on x 2 ½xi; xiþ1� which implies Ki;j ¼ ½xL
i;j; x

R
i;j� and (2.12) gives
Ii;j ¼
Z xR

i;j

xL
i;j

FmðxÞdx: ðA:20Þ
Utilizing (A.19), according to Lemma 3.5 one has
x̂L
i;j ¼ xL

i;j þ OðhRþ1Þ; x̂R
i;j ¼ xR

i;j þ OðhRþ1Þ: ðA:21Þ
Combining (A.20) and (A.21) gives
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Ii;j ¼
Z x̂R

i;j

x̂L
i;j

FmðxÞdxþ OðhRþ1Þ: ðA:22Þ
Together with (A.22) and Lemma 3.4 one obtains the second part in (3.13). h
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